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Abstract

Measurement of the effect of the eddy current induced in the APS storage ring vacuum
chamber by the storage ring sextupole magnet and its compensation using digital feedback with
proportional, integral, and derivative (PID) control algorithm are presented.  The magnetic field

in the vacuum chamber shows strong quadrupole and sextupole components varying with fre-
quency, in addition to significant attenuation and phase shift.  Large changes in the magnet resis-

tance and inductance were also observed.  Development of a theory of digital feedback to obtain
system responses and the conditions for optimal control will be described, in conjuction with
design of a digital filter to compensate for the eddy current effect.



1. Introduction

In the APS storage ring, an extensive beam position correction system will be imple-

mented comprising many corrector magnets (318 total) and BPMs monitoring the positions of
the positron and photon beams.  The AC corrector magnets, which will correct beam motion of

up to 100 µrad at 25 Hz, induce eddy current in the relatively thick (1/2”) aluminum vacuum
chamber of the storage ring.  The attenuation and phase shift of the magnet field due to this eddy
current was measured and compensated for in previous works1–3 using analog filters and a dipole

magnet used for the Electron Cooling Ring Experiment at Fermilab.4  In order to eliminate the
problems characteristic of analog circuits, e.g., drift, offset, and sensitivity to temperature

change, we will use in this work digital signal processing (DSP) and digital closed loop feedback
to control the magnetic field in the vacuum chamber.

A prototype of the storage ring sextupole magnet was used in this work, which has geom-
etry similar to that of the six–pole horizontal/vertical corrector magnet.  The effect of the eddy

current in the 0.025”–thick magnet laminations was measured and found to be negligibly small
in a previous work.5

This note will be largely divided into two parts.  The first part will describe measurement
of the effect of the vacuum chamber eddy current on the horizontal and vertical magnetic fields

as functions of frequency and position.  Measurement of frequency dependence of the magnet
impedance will also be presented.  In the second part, we will develop a theory of digital closed

loop feedback using analytical methods and present measurement results on the vacuum chamber
eddy current effect and its compensation using digital signal processing (DSP).6,7

2. Measurement Setup

Figure 2.1 shows the mechanical and electrical setup for the measurements described in
this note.  The magnet shown in Fig. 2.1(a) is the storage ring H/V corrector magnet, which has

geometry similar to that of the sextupole magnet used in this work.  The magnet has main coil
windings on all 6 poles and correction coil windings on the 4 side poles.  Only the main coil
windings were used for this work.  The magnet has the effective length of 28.7 cm,8 and the vac-

uum chamber was 4’ (122 cm) long.  A portion of the vacuum chamber was cut away from the
positron beam chamber section to fit it in the magnet bore and to reduce eddy current effect.
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Fig. 2.1:  (a) Vacuum chamber cross section in the storage ring H/V corrector magnet, similar to
the sextupole magnet used in this work.  (b) Schematic diagram of measurement setup for the
eddy current effect on the magnet field.  The voltage (V) and the current (I) signals were pro-
vided by the power supply and the magnet field (B) was measured by a gaussmeter with a Hall
probe.  The ADC and DAC are on the ATMIO–16 board.  ARF is an analog reconstruction filter
with 200 Hz bandwidth.



To simulate the control signal and the noise, e.g., ground vibration and magnet current

fluctuation, a function generator (HP Model 3245A) was used.  The magnet field was measured
using the series 9900 menu–driven multi–channel gaussmeter manufactured by F.W. Bell.  The
full–scale analog output signal level is ±3V.

The power supply was a Kepco bipolar operational power supply/amplifier, model No.

BOP 20–20M, with voltage range of ±20V, maximum current of 20A, and bandwidth of 10 kHz
(–3 dB attenuation).  The current–controlled mode was used for this work.  For open loop mea-

surements the current control signal port (Ic) was connected to the function generator output
(SA), and for closed loop measurements it was connected to the analog reconstruction filter
(ARF, SB).  Analog voltage and current monitoring signals were provided through an interface

card, which were digitized and analyzed by a computer.  The full–scale signals are ±10V for both
the voltage and the current.

The data acquisition and analysis was done by a computer with a 486 processor (CPU),

equipped with an ATMIO–16 multifunction I/O board and a GPIB board to interface the function
generator.  Both of these were manufactured by National Instruments.  The ATMIO–16 board, a
multichannel ADC/DAC, has 16 input analog–to–digital converter (ADC) channels and two out-

put digital–to–analog converter (DAC) channels.  Configured for differential input, as in our
setup, the maximum number of input channels is 8.  The analog input signal range for the

ATMIO–16 board is ±10V for all channels.  With the digital resolution of 12 bits, the conversion
formula is

                                 V (in analog) = 10
2, 048

 V (in digital). (2.1)

This gives a resolution of approximately 5 mV.

Given a nominal frequency supplied by the user, the actual frequency is first found by

counting the integer number of periods and the time elapsed as measured using the clock on the
ATMIO board.  Using this frequency f, the data is fit to the function

                                        V� V0 cos (2�ft � �) (2.2)

using linear least squares method,9 which gives the amplitude V0 and the phase φ.  This proce-
dure is done for the voltage, current, and magnet field, and the amplitudes and phases are
compared to obtain the resistance and inductance of the magnet and the attenuation and phase

shift of the field due to the eddy current.

The analog–to–digital conversion was done at the maximum rate of 100 ksamples/sec,
which introduces a timing error of 10 µsec between two adjacent channels.  With sinusoidal sig-

nal of frequency f, the phase measurement error per Hz per channel is

                                                
�� (degrees)

f (Hz)
� 3.6 x 10–3. (2.3)



The result of measurement on ∆φ/f at the frequencies of 10, 100, and 200 Hz is shown in Table

2.1.  This phase error was compensated for in the subsequent measurements.

Table 2.1:  Measurement results of the phase delay between channels 1, 2, and 3 of the
ATMIO–16 board.
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ÁÁÁÁÁÁÁÁÁÁÁ

–7.21E–03 ± 7.15E–06

3. Measurement of Magnet Impedance

Let us write, assuming harmonic time dependence e–iωt,

                                 V
I
� �V

I
� ei�

� R–i�L, (3.1)

which gives

                               R� V
I

cos� and L� – 1
�

V
I

sin�. (3.2)

φ is the phase shift between the current and the voltage.  For an inductive load, such as a magnet,
φ is negative.  The current I and the field B are related by

                                                 B� C I ae–iϕ, (3.3)

where C is a factor that normalizes a to 1 at DC, and a and ϕ are the attenuation factor and the
phase shift primarily due to the vacuum chamber eddy current.  To avoid the offset calibration

error in the output monitoring signals provided by the power supply, an AC signal of very low
frequency, say 0.1 Hz, was applied instead of a DC signal to measure the amplitude ratio.  The

current was maintained at ≈1 A, which produced a magnetic field of ≈12 G at DC, and the scale
on the gaussmeter was set to 30 G.



                                                                  (a)

0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200

R
(�

)

f (Hz)

Bx

By

                                                                    (b)

0.0

5.0

10.0

15.0

0 50 100 150 200

f (Hz)

L(
m

H
)

Bx

By

Fig. 3.1: Change of magnet impedance due to the vacuum chamber eddy current as a function of
frequency: (a) resistance R in units of Ω and (b) inductance L in units of mH.



Figure 3.1(a) shows the results of measurements on the resistance of the magnet con-

nected as vertical and horizontal correctors and Fig. 3.1(b) shows the results of measurements on
the inductance.  The large change in the magnet impedance with increasing frequency is mainly
attributable to the eddy current in the vacuum chamber.  The effect of the eddy current in

0.025”–thick magnet laminations is negligible.5

4. Measurement of Field Attenuation and Phase Shift

Attenuation and phase shift of the magnetic field relative to the driving magnet current
were measured in a manner similar to measurement of the magnet impedance as described in the

previous section, and the amplitude ratio and phase difference between the field B and the mag-
net current I were measured.

In Fig. 4.1(a)  and 4.1(b)  are shown the attenuation and phase shift of the field relative to
the magnet current as functions of frequency at the center of the vacuum chamber (x = 0).  The

vertical field shows stronger attenuation and phase shift with frequency than the horizontal field,
though the horizontal field appears to catch up in the high frequency region.  Qualitatively, this is

due to the geometry of the magnet poles and the vacuum chamber, which is vertically a little
thinner but has a much larger surface cutting the magnetic flux than horizontally.  This large
aspect ratio and proximity of the magnet poles to the surface may create a more unfavorable

condition for the vertical than the horizontal field.

Figures 4.2(a) and 4.2(b) show behavior of the magnetic field in the vacuum chamber as
a function of the frequency and the horizontal distance x from the center.  The antechamber side

of the storage ring vacuum chamber is the positive direction.  The magnetic field was measured
at the positions x = –10, –5, 0, 5, and 10 mm relative to the center of the vacuum chamber and at
various frequencies.  The data measured at the frequencies f = 0.1, 5, 20, 50, 100, and 200 Hz are

shown.  Both the amplitude and phase show strong dependence on frequency and position.
When the frequency is low (below 20 Hz), the quadrupole component of the magnetic field

increases with frequency.  Assuming harmonic time dependence e–iωt, we write the vertical com-
ponent of the magnetic field By as

             By(x,�) � By0(�) �1� b1(�)x � b2(�)x2�. (y � 0) (4.1)
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Fig. 4.1: (a) Attenuation of the field efficiency |Bx,y0/I| and (b) phase shift ϕ between the field
and the current as functions of frequency at the center of the vacuum chamber (x = 0).
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Fig. 4.2: Dependence of the magnetic field in the vacuum chamber on the position and the fre-
quency.  x is the horizontal distance from the center where the field was measured.  The ante-
chamber side is the positive direction.  (a) Amplitude attenuation and (b) phase delay relative to
the center (x = 0).



b1 is the dipole coefficient and b2 is the sextupole coefficient.  The horizontal field component

Bx can be expanded in a similar form.  In this work, the horizontal field was measured only at
the center (x = 0, y = 0) for Bx0(ω) at several different frequencies.  The amplitude and phase of
the center fields By0 and Bx0 show very strong dependence on the frequency of the driving cur-

rent due to the eddy current in the vacuum chamber.

The coefficients b1(ω) and b2(ω) are complex numbers varying with frequency.  That is,
we can write

                  b1(�) � b1r(�) � ib1i(�) and b2(�) � b2r(�) � ib2i(�). (4.2)

The values of  b1r, b1i, b2r, and b2i are listed in Table 4.1  and are plotted in Fig. 4.3 .  Below
50 Hz, which is the frequency range of our interest for beam position correction, the quadrupole

components dominate, and beyond 100 Hz, the sextupole components dominate.  The strong
quadrupole coefficient, which increases rapidly in magnitude in the low frequency range [0, 20]

Hz, is a cause for concern.  For local beam position feedback, which employs four corrector
magnets to adjust the angle and displacement of the photon source, the corrector magnet field in
the vacuum chamber must be very uniform to prevent local bump closure error.  The good–field

requirement on the corrector magnet field is10

                                     �B
B0

� 8 x 10–3, for |x| � 3.2 mm. (4.3)

Using b1r = –0.12 and b1i = 0.017 at f = 20 Hz, we have

                              �B
B0

� 0.039 at |x|� 3.2 mm, f� 20 Hz (4.4)

which is about 5 times larger than required by Eq. (4.3).

5. Theory of Digital Closed Loop Feedback

In this section, we will develop a theory of digital closed loop feedback using propor-
tional (P) control.  We will first start with analysis of the simplest of closed loop feedback sys-
tems with only one element, a gain of G, and show that the system is not usable.  We will then

insert one or more filtering elements in series with the gain in the feedback loop and analyze the
system for stability.  Particularly, we will derive the condition for stability and for the optimal

control of a feedback system in terms of the open loop gain, the open loop bandwidth, and the
sampling frequency.



Table 4.1: Multipole components of the magnetic field in the vacuum chamber.
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Fig. 4.3: Plotting of the multipole coefficients b1r, b1i, b2r, and b2i as functions of frequency.
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Fig. 5.1: A simple digital closed loop feedback system with open loop gain G > 0.

In Fig. 5.1 is shown a simple digital feedback system with positive open loop gain G.
The discreet input sequence {sn} and the output sequence {yn} are related through

                                      yn�1 � G(sn–yn). (G � 0) (5.1)

Let us for simplicity take an example of an input step impulse {sn} given by

                                              sn � �
0, n� 0
1. n� 0. (5.2)

The initial condition for the output sequence {yn} is yn = 0 for n ≤ 0.  Then the difference equa-

tion in Eq. (5.1) is solvable and the solution is given by

                                   yn �
G

1� G
(1–(–G)n). (n � 0) (5.3)

We immediately see that when G is greater than 1, the feedback system is unstable.  When G is
less than 1, the system is stable, but the transient behavior at the onset of the step impulse is

strongly oscillatory.  Writing down a few terms after n = 0, we have

                  y0 � 0, y1 � G, y2 � G(1–G), y3 � G(1–G� G2), (5.4)

and it finally settles to

                                         lim yn �
G

1� G
. (G � 1) (5.5)

Therefore, even when G is less than one, the large overshoot and the oscillatory behavior of the
system renders it unusable as a control system.  Moreover, since our goal is rejection of noise

perturbing the beam position, the open loop gain G needs to be larger than 1.  This necessitates

insertion of a low–pass filter in series with the gain in order to suppress the oscillation and stabi-



lize the system.  In the following sections, we will investigate the stability criteria of a feedback

system with one or more filtering elements in the feedback loop.

5.1 Digital Feedback with One Filtering Element

To determine the relation between the sampling frequency and the bandwidth for the
optimal feedback control, let us consider a simple feedback system with proportional control and

a constant loop gain G as shown in Fig. 5.2.

sn rn
G

yn

yn+1

–
� BLF

tn

(B)

Fig. 5.2: A simple P–control closed loop feedback system.

The band–limiting filter (BLF) is a single–pole digital low–pass filter with bandwidth of fb.  The
sampling frequency of the system is denoted by Fs.  We will use the filter parameter c given by5

                                                        c� cot�
�fb
Fs
�. (5.6)

The signal symbols sn, yn, rn, and tn are related to each other by

     rn � sn–yn, tn �
1

1� c
�rn � rn–1–(1–c) tn–1

�, and yn�1 � G tn. (5.7)

Combining the three equations in Eq. (5.7), we obtain

                (1� c)yn�1 � (1–c� G)yn � Gyn–1� G(sn � sn–1). (5.8)

This is a difference equation for the discreet sequences {sn} and {yn}.  The output {yn} should

follow the given control signal {sn} as closely as possible without divergence.  Given the initial
conditions y0 and y1, the output of the system is uniquely defined in terms of the input.

The stability analysis of the system for general input sequence {sn}can be done using the

Z–transform.6,7  However, to get more insight into the temporal behavior of the system, we will



use Fourier analysis after rewriting Eq. (5.8) into a differential equation, assuming that the out-

put {yn} is well–behaved; that is,

                                                yn�1–yn �� max yn. (5.9)

Using

s� 1
2

(sn � sn–1), y � yn, y� � 1
2

(yn�1–yn–1), and y�� � yn�1–2yn � yn–1, (5.10)

where the prime (′) is a time derivative operator defined as

                                                      � �
1
Fs

d
dt

, (5.11)

we have

                     (1� c� G)y�� � 2(1� c–G)y� � 4(1� G)y � 4Gs. (5.12)

Equation (5.12) is an inhomogeneous second–order differential equation in y.  Assuming har-
monic time dependence e–iωt, the Fourier transform of Eq. (5.12) gives,

                                   y~
� s~ G

1� G
	 �1
�1–i�


	 �2
�2–i�


, (5.13)

where eigenvalues γ1 and γ2 are solutions of the quadratic secular equation

                       (1� c� G)�2–2(1� c–G)�Fs� 4(1� G)F2
s � 0. (5.14)

y~ and s~ are Fourier transforms of y and s, respectively.  Equation (5.13) shows that the closed

loop feedback system with a single–pole low pass filter acts like a two–pole filter.  The open
loop gain G and the filter parameter c determine the stability of the system through γ1 and γ2 as

follows:

�

�

�

�




Re(�1,�2) � 0, Im(�1,�2) = 0
�1 = �2 � 0
Re(�1,�2) � 0, Im(�1,�2) � 0
Re(�1) = Re(�2) = 0
Re(�1) � 0 or Re(�2) � 0

� overdamped, stable
� critically damped, stable
� underdamped, stable but oscillatory
� undamped
� unstable

(5.15)

The feedback system is stable only when both γ1 and γ2 have positive real parts.  From Eq.
(5.14), this is satisfied if 1 + c — G > 0.  Expanding the solution of Eq. (5.14) to the first order

of fb, assuming c is large (fb << Fs), we obtain



                                
�1
2�

� (1� G)fb and
�2
2�

�
Fs
� –(1� 3G)fb. (5.16)

These correspond to the two poles of the closed loop feedback system.  We see that the closed
loop bandwidth is roughly (1 + G) times the open loop bandwidth fb.

Let us take an example of fb = 30 Hz, Fs = 4 kHz, and G = 3.  Then from Eqs. (5.6) and

(5.14), the solutions are

                        c� 42.4, �1 � 0.228 Fs, and �2 � 1.514 Fs, (5.17)

and the eigenfrequencies are

                          f1 �
�1
2�

� 145 Hz and f2 �
�2
2�

� 964 Hz. (5.18)

Both f1 and f2 are positive real, and therefore, the system is stable.  The bandwidth has also been

broadened by a factor of 5 from the open loop bandwidth of 30 Hz.

5.2 Digital Feedback with Multiple Filtering Elements

sn rn
G

yn

yn+1

–
�

tnFilter  1 Filter  2 Filter  k

Fig. 5.3: Closed loop feedback with multiple filtering elements.

The analysis presented in the last section for a closed loop feedback system with one fil-
tering element can be generalized to systems with multiple filtering elements connected in series
as shown in Fig. 5.3.  Including more filters in the system can degrade the overall performance

of the system by introducing a large open loop phase shift.  However, it is sometimes necessary
to do so in order to prevent overshoot and oscillation when the open loop bandwidth is too large

for a given sampling frequency and loop gain.  For example, the beam position feedback system
uses corrector magnets and beam position monitors (BPMs).  When the bandwidth of the BPM is
too large, it must be compensated by another low pass filter in the digital signal processing unit.

Reducing the bandwidth of the BPM itself by integrating data for a longer time is not as good a



solution for several reasons: 1) the number of turns required may be too large, 2) simple integra-

tion may result in oscillation due to undesirable large phase shift beyond the bandwidth, and 3)

the DSP does 32–bit floating point operation and therefore is more accurate than the BPM pro-
cessing unit.

The relation for the loop gain, the open loop bandwidth, and the sampling frequency of
an optimally controlled closed loop feedback system will be derived in Section 5.4.  In this sec-

tion, we will replace analog components, such as the vacuum chamber, the magnet, and the ana-
log reconstruction filter, with corresponding digital filters with first–order poles, so that the sys-
tem response may be put in the form of Eq. (5.13).

Let us take the case of three (n = 3) filters with filter coefficients c1, c2, and c3, which are

given by

                                            ci � cot�
�f i
Fs
�. (i � 1, 2, 3) (5.19)

fi is the frequency of 3 dB attenuation of the i–th filter.  It can be shown that the output y in the
continuous domain satisfies the differential equation given by

                     d4y���� � d3y��� � d2y�� � d1y� � d0y � d0
G

1� G
s, (5.20)

 where

                            d4 � (1� c1)(1� c2)(1� c3) � G,

                            d3 � 2((1� c1)(1� c2)(1� c3)–G),

                         d2 � 4(2� c1 � c2 � c3 � c1c2 � c2c3 � c3c1 � 2G), (5.21)

                            d1 � 8(1� c1 � c2 � c3–G),

                            d0 � 16(1� G).

The secular equation for Eq. (5.20) is

                           d4�
4–d3�

3Fs� d2�
2F2

s–d1�F3
s � d0F

4
s � 0. (5.22)

With solutions γ1, γ2, γ3 and γ4 from Eq. (5.22), we have an expression similar to Eq. (5.13),



0.1 1 10 100 1000

f (Hz)

(a)

(b)

~

0

–10

–20

–30

–40

–50

–60

0.1 1 10 100 1000

90

0

–90

–180

–270

–360

~
~

ϕ

f (Hz)

(y
 / 

s)
 (

de
gr

ee
s)

|y
 / 

s|
 (

dB
)

~
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                y
~
� s~ G

1� G
� �1
�1–i�

�� �2
�2–i�

�� �3

�3–i�
�� �4

4–i�
�. (5.23)

In Eq. (5.23), the overall system response resembles that of a filter with poles at ω = γj (j
= 1, 2, 3, 4).  This result can be generalized to the case of k poles.  A feedback system with k

open loop poles, counting m–th order poles as m poles, can be represented as a filter of k+1
poles in the complex plane.  That is,

                      k open loop poles� y~ � s~ G
1� G

�
k�1

j�1

�
�j

�j–i�
�, (5.24)

where γj’s are solutions of the corresponding (n+1)–th order polynomial obtained by performing
transformations similar to Eq. (5.10).

Let us take an example of a 3–pole system with the following parameters:

                    f1 � 30 Hz, f2 � 100 Hz, f3 � 200 Hz, and G� 3. (5.25)

From Eqs. (5.21) and (5.22), we have, in units of Hz,

         
�1
2�

� 48� 109i,
�2
2�

� 48–109i,
�3
2�

� 426, and
�4
2�

� 749. (5.26)

The real parts are all positive, and, therefore, the system is stable.  The imaginary parts indicate
frequency shift of the system response and resonances will appear in the system response near

those frequencies.  This is typical of closed loop feedback and can be readily recognized using
Nyquist diagrams.  Figure 5.4 shows the frequency response of the system with the parameters in
Eq. (5.25).

5.3 Determination of Sampling Frequency, Bandwidth, and Gain

In the last two sections we analyzed digital feedback systems with one or multiple filter-
ing elements in the closed loop.  In this section we will use the results of Section 5.1 for systems

with one filter to obtain the optimal parameters for the sampling frequency, bandwidth, and gain.
We will use only one filter to make the system simpler to analyze and the eigenfrequencies easier

to identify.  The results will later be applied to measurements on and compensation for effect of
the vacuum chamber eddy current for control of the corrector magnet field in the vacuum cham-
ber.

When the roots of Eq. (5.14) are the same (γ1 = γ2), the system is critically damped and
provides the optimal control with the shortest settling time without overshoot.  The open loop

gain Gc that corresponds to critical damping is, from Eq. (5.14),



                          Gc �
2
3

3c2
� 6c� 4� –c–5

3
� 0.155c–0.5. (5.27)

In the last step of Eq. (5.27), the expression in the square root was expanded assuming that  c is

much larger than 1.  This assumption is verified immediately.  The gain Gc must be large for
effective control, and therefore, c must also be large.  Equation (5.27) is the necessary condition

for the output to be critically damped at application of a step impulse input.  When G is larger
than Gc, the output will be underdamped, causing oscillation.  In the opposite case when G is
smaller than Gc, the output will be overdamped, resulting in longer settling time.  From Eqs.

(5.6) and (5.27), we have, when fb << Fs and G >> 1,

                                                               
Fs

G fb
� 20. (5.28)

Equation (5.28) is the basic relation for loop gain, open loop bandwidth, and sampling frequency
of an optimally controlled feedback system with one bandlimiting filter connected in series with

a constant open loop gain G.

In the case of a more complex PID (proportional, integral, and derivative) control, we

must also consider the effect of the integral and derivative control gains, KI and KD.  However,
when KI is small (<< 1), the frequency range of concern for loop stability is primarily covered

by the proportional control action, and therefore, Eq. (5.28) with G replaced by KP remains
valid.

6. Measurement of the Vacuum Chamber Eddy Current Effect

In this section, we will present the results of measurement of the effect of the vacuum

chamber eddy current on the magnet field.  The setup is the same as that shown in Fig. 2.1(b) in
the open loop configuration (switch SA closed).  The power supply was in the current–controlled
mode, which has an internal closed loop of its own.

Figure 6.1 shows the schematic diagram for closed loop feedback with PID control for

the magnetic field.  There are two types of input: sn for set points and wn for external perturba-
tion.  In this measurement, only one of them was used at a time.  When the sn input is used, wn is
set to 0, and vice versa.  In this configuration, the spectral ratio of yn  and sn gives the system

transfer function of the closed loop feedback system and the spectral ratio of yn and wn gives its
noise transfer function.
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The analog reconstruction filter (ARF) is an analog low pass filter of 200 Hz bandwidth.

It was inserted in front of the power supply control input in order to suppress the anomalous high
frequency ringing in the magnet current, as shown in Fig. 6.2, when the feedback loop was
closed.  It was also intended to simulate the BPM, which will have finite bandwidth due to aver-

aging over many turns.  This ringing was observed when the DSP could not keep up with the
sampling frequency and failed to operate synchronously with the ADC.  It was not observed

when the loop was open.  The backlog in the DSP causes bursts of oscillation as is observed if
the open loop bandwidth is not narrow enough to suppress them.

6.1 Measurement Results and Design of Digital Compensation Filter

Figure 6.3 shows the results of measurement on the amplitude ratios and relative phases

of the current control signal Ic, the actual current on the magnet I, and the magnetic field B in the
vacuum chamber measured with a Hall probe in the frequency range of 0.1 Hz — 1 kHz.  This
apparently wide range of frequency of measurement is necessary for the design of the digital

compensation filter for the eddy current.

The effect of the eddy current in the vacuum chamber is shown in the rapid decrease of
the field current ratio (B/I) with frequency.  The phase delay of 35° between the current control
signal Ic and the magnet current I at 1 kHz is due to the internal closed loop feedback for current

control.   The bandwidth of the power supply in the current–controlled mode is rated at 10 kHz
for –3 dB attenuation.

The attenuation and phase shift of the field B with respect to the current I has an adverse

effect on the closed loop feedback by decreasing the magnet field efficiency and deteriorating
the stability of the feedback loop.  This can be partly remedied by inserting a digital compensa-
tion filter (CF in Fig. 6.1) in front of the power supply control input.  The digital compensation

filter is designed such that its input and the digitized signal from the gaussmeter have ratio close
to unity within the frequency range of our interest.  The measurement results of the field attenua-

tion is normalized to dimensionless units and fitted to an expression as given by6,7

                                     H(z)� C�
K

k�1

1� fkz
–1� gkz

–2

1� ckz
–1� dkz

–2
. (6.1)
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Here, z = e–i� and λ is the digital frequency given by

                                     � � 2 tan–1��f
Fs
� � p 2f

Fs
when f�� Fs. (6.2)

The transfer function H(z) relates the Z–transforms V(z) and X(z) of the sequences {xn} and {vn}

shown in Fig. 6.1 through

                                                         V(z) = H(z) X(z). (6.3)

For more discussion on the Z–transform of discreet sequences, readers are referred to Refs. 6 and

7.  The transfer function corresponding to the CF is just the inverse of H(z).  Let U(z) and Q(z)
be the Z–transforms of the sequences {un} and {qn}, then we have

                                                        Q(z)�
1

H(z)
U(z). (6.4)

Putting

                                         H(z)�

�
M

k �0

akz
–k

1��
L

k�1

bkz
–k

, (6.5)

we can write the inverse of H(z) as

                                         1
H(z)

�
1
a0

�
L

k�0

bkz
–k

1��
M

k�1

ak
a0

z–k

(b0 � 1), (6.6)

and we have

                                     qn �
1
a0
�
�

	
un ��

L

k�1

bkun–k–�
M

k�1

akqn–k�



�
. (6.7)

Using the measurement results shown in Fig. 6.3(a)  and with K = 2 and Fs = 4 kHz, the best fit

gives



                                                       C = 0.0173025

c1 = 1.94223, d1 = 0.94284, f1 = –0.90665, g1 = –0.08920, (6.8)

c2 = –1.21537, d2 = 0.21730, f2 = –0.69730, g2 = –0.26649.

The Hall probe sensitivity of 10 G/V and the power supply control sensitivity of 2 A/V were

used.  From Eqs. (6.1), (6.5), (6.7) and (6.8), we obtain

qn = 57.8 (un — 3.1576 un–1 + 3.5207 un–2 — 1.5679 un–3 + 0.2049 un–4) +

        1.6040 qn–1 — 0.2765 qn–2 —  0.3038 qn–3 —  0.0238 qn–4. (6.9)

The sequence {un} is in units of dimensionless computer counts converted from voltage.    From
Eq. (6.9), the next output of the compensation filter is calculated using the current input, 4 pre-

vious inputs, and 4 previous outputs.  Since no future samples from either the input or output are
needed to calculate the current output, the filter is physically realizable or causal.

6.2 Performance of the Closed Loop Feedback

Figures 6.4(a) and 6.4(b) show the results of measurements on the closed loop feedback

for the corrector magnet field in the vacuum chamber.  A bandlimiting filter (BLF) of 30 Hz was
used for these measurements.  The eddy current compensation filter was turned on and off during

measurements for comparison.  For the open loop measurements, Bc is the control signal at
either the input of the CF (un, with CF) or the input of the PS (qn, without CF)  in Fig. 6.1.  The
ARF of 200 Hz bandwidth in front of the power supply was turned off.  For the closed loop mea-

surements, Bc is the control signal at the input of the DSP (sn) in Fig. 6.1.  The CF was turned on
(with CF) or off (without CF) and the ARF in front of the power supply was turned on.  These

results primarily compare the system performance with and without the CF.

Compensation for the eddy current effect by the CF is almost perfect in restoring the
amplitude.  Still, there is significant phase delay remaining (–79° at 200 Hz), because the trans-
fer function H(z) in Eq. (6.1) does not simultaneously model the eddy current effect perfectly in

both amplitude and phase.  The coefficients in Eq. (6.8) were obtained in such a manner that
only the amplitude data fit |H(z)| as closely as possible with K = 2.
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Figure 6.5 shows time domain measurements of the magnetic field B inside the vacuum

chamber and the magnet current I in response to the input square pulses of 15 Hz with the CF
turned off.  Figure 6.6 shows similar measurements with the CF turned on for comparison.  The
results demonstrate the clear advantage of canceling the effect of the eddy current.  Without the

CF, as shown in Fig. 6.5(b), the magnetic field exhibits strong oscillation.  This can be explained
from the analysis of Section 5.2, considering the vacuum chamber as a low–pass filter to the AC

magnetic field with several poles on the imaginary axis of the complex frequency space.  Closing
the feedback loop adds one more pole to these and rearranges them.  If some of these rearranged
poles have real parts, especially those with the smallest imaginary parts, then the overall system

response could amplify the low frequency components and oscillation results.  This is also
shown in Fig. 6.4(a), where the amplitude ratio |By0/Bc| measured on the feedback loop without

the CF is larger than unity below 50 Hz, with a peak at around 30 Hz, and decreases sharply.  In
comparison, the feedback loop with the CF shows a much cleaner response.

From this consideration, one might say that the feedback system response without the CF
could be improved by broadening the bandwidth of the BLF, since locating the pole farther away

from the origin will move the peak to a higher frequency.  This is not necessarily true.  Consider
the single–pole low–pass filter transfer function

                                         F(�) �
�

�–i�
�

�r � i�i
�r � i(�i–�)

. (6.10)

At resonance (ω = γi), we have

                                        |F(�)| � 1� Q2� . �Q � �
�i
�r
�� (6.11)

Equation (6.11) shows that |F(ω)| will actually get larger, and therefore worse, if the Q–factor

increases.

7. Summary

In this work, the magnet impedance and the attenuation and phase shift of the magnet
field with respect to the magnet current due to the vacuum chamber eddy current were measured

as functions of frequency in the range DC to 200 Hz.  The magnet was the storage ring sextupole
magnet with vertical correction winding, and a 4 foot–long piece of the APS storage ring vac-
uum chamber was inserted in the magnet bore.
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The results show significant attenuation and phase shift of the magnet field (–3.2 dB and

–49° for Bx, and –10.1 dB and –60° for By at 20 Hz) in the vacuum chamber.  Large changes in
magnet resistance and inductance were also observed.  Spatially resolved measurements of By at
the midplane revealed strong quadrupole and sextupole components in the low frequency range

below 50 Hz, which could potentially degrade global beam stability due to local bump closure
error.  This problem has yet to be identified in a manner rigorous and quantitative enough to be

properly resolved.

Conditions for optimal control were obtained through development of a theory of digital
feedback.  The results were successfully applied to closed loop control of the magnetic field in

the vacuum chamber in combination with the eddy current compensation filter, using digital sig-
nal processing (DSP) and a proportional, integral, and derivative (PID) control algorithm.  These

two, together with the singular value decomposition (SVD) technique for matrix inversion,6,11

will be the basis for the global and local beam position feedback in the APS storage ring.
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